Product Application Note #### **Application Note # 122** ACCURATE E_s/N_o SETTING FOR DOCSIS/CATV BER MEASUREMENTS The Data-Over-Cable Service Radio Frequency Interface Specifications call out BER performance vs. E₂/N₀ as required tests for both the Upstream CMTS (Cable Modern Termination System) and Downstream CM (Cable Modern) receivers. Accurate setting of E_s/N_0 for BER testing can be accomplished using the UFX99CA with the setup in **Figure 1** below. E_s/N_o (dB) is set with the adjacent channel or other interfering signals off. According to the following procedure: - 1. Measure C_p, carrier power, at the monitor port with noise off. - Adjust carrier power to desired level using signal attenuators in the UFX99CA. - 3. Measure N_p, noise power at the monitor port with carrier off. 4. Using the equation below, solve for E_s/N_o. - 5. Adjust the noise attenuators until the desired ratio is achieved. An optional filter with calibrated Noise bandwidth can be ordered from Noise Com to achieve E_x/N_0 accuracy for a specific frequency range. - After the correct ratio is achieved, the carrier and adjacent signals can be turned on to perform the BER test. # $E_s/N_o = C_p - N_p + 10log(NBW/SR)$ ### Where: E_{s} Energy per Symbol. N_o = Noise Power Spectral Density. Calculated from noise power measurement and calibrated NBW. C_p = Measured power of the carrier or signal (dBm or dBmV). N_p = Measured power of the noise (dBm or dBmV). NBW = Noise Band-width of the noise source, or calibrated filter NBW (Hz). Used to determine N_o. SR = Symbol Rate(symbols/second). E_s/N_o (dB) is set with the adjacent channel or other interfering signals off. Similarly, for Carrier to Noise ratio. $C/N = C_p - N_p + 10log(NBW/SBW)$ Where SBW = DUT System bandwidth. Noise Com - 1999 Data Subject to Change ## **Noise Com** E. 64 Midland Avenue Paramus, New Jersey 07652 Phone: (201) 261-8797 Fax: (201) 261-8339 Email: info@noisecom.com Web site: http://www.noisecom.com